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Abstract 

 

To understand cellular coordination of multiple transcriptome regulation mechanisms, we 

simultaneously measured transcription rate (TR), mRNA abundance (RA) and translation activity (TA). 

This revealed multiple quantitative insights. First, the genomic profiles of the three parameters are 

systematically different in key statistical features. Sequentially more genes exhibit extreme low or high 

expression values from TR to RA, then to TA.  That is, because of cellular coordination of these 

regulatory mechanisms, sequentially higher levels of gene expression selectivity are achieved as genetic 

information flow from the genome to the proteome. Second, the contribution of the stabilization-by-

translation regulatory mechanism to the cellular coordination process was assessed. The data enabled an 

estimation of mRNA stability, revealing a moderate but significant positive correlation between the 

estimated mRNA stability and translation activity. Third, the proportion of a mRNA occupied by un-

translated regions (UTR) exhibits a negative relationship with the level of this correlation, and is thus a 

major determinant of the mode of regulation of the mRNA. High-UTR-proportion mRNAs tend to defy 

the stabilization-by-translation regulatory mechanism, staying out of the polysome but remaining stable; 

mRNAs with little UTRs largely follow this regulation. In summary, we quantitatively delineated the 

relationship among multiple transcriptome regulation parameters, i.e., cellular coordination of 

corresponding regulatory mechanisms.   
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Background 

 

The genomic sequences are readily available for a large and ever-increasing number of species. These 

sequences, like English literature, represent static strings of symbols/alphabets (A, T, C, and G). Hence, 

genomic sequences are often termed as the “book” of life. To some degree, the cell can be considered as 

the “reader” of the genomic “book”, and the multi-stepped gene expression process as the “reading” 

process [1-4]. Through the gene expression process, the seemingly simplistic genomic alphabetical 

strings are selectively and dynamically transcribed into transcriptome sequences, which are in turn 

translated into amino acid sequences in the proteome – the main machinery that controls biochemical 

reactions and processes in support of cellular functions. This process is integral to essentially all cellular 

activity and entails multiple regulatory mechanisms. A complex picture of the relationship among these 

regulatory mechanisms has recently emerged [5-11].  

 

In some omics experiments, mRNA and protein abundance are measured simultaneously. One lesson we 

learned is that correlation between the two is not always satisfactory enough for mRNA abundance to be 

a reliable predictor of protein abundance. This discrepancy had been observed prior to the genomic era 

[12, 13]. It was confirmed in the yeast S. cerevisiae by one of the first simultaneous transcriptome and 

proteomic measurement [14], and then observed in many other high-throughput studies [5, 9, 10, 15-21].  

 

Transcriptome analysis techniques have also been coupled to conventional experimental protocols to 

measure other gene expression parameters. Initially micro-array [22-25], and then NGS [26, 27], were 

coupled to the nuclear run-on technique for genome-wide transcription rate measurement. Additionally, 

NGS was coupled to metabolic labeling of nascent transcripts to measure transcription rate [10, 28-31]; 

it is also coupled to RNA polymerase II chromatin immunoprecipitation (ChIP) for the same purpose. 

These strategies enabled simultaneous transcription rate and mRNA abundance measurement. Once 

again, some levels of discrepancy were observed in that mRNA abundance was not always a good 

predictor of transcription rate. 

 

These observed discrepancies among gene expression parameters were a reflection of the complexity of 

the gene expression process [32], and should be informative for us to unravel the complexity. At the 

same time nascent RNA and protein are produced, existing RNA and protein are being selectively 

.CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/104901doi: bioRxiv preprint first posted online Jan. 31, 2017; 

http://dx.doi.org/10.1101/104901
http://creativecommons.org/licenses/by-nc/4.0/


degraded. The abundance of protein and mRNA represent the balance of the respective production and 

degradation. Discrepancy among gene expression parameters is considered evidence for some levels of 

decoupling among transcription, translation, mRNA degradation and protein degradation; that is, the 

gene expression parameters can be divergently regulated. Given the technical feasibility, multi-

parameter approaches are being used to study the discrepancy and glean out fundamental gene 

expression regulation principles. Such studies will potentially lead to more efficient gene expression 

analysis strategies that generate more informative data.  

 

Such multi-parameter approaches should be especially fruitful for transcriptome analysis. The polysome 

profiling analysis utilizes NGS to quantify polysome-associated mRNAs, i.e., actively translating 

mRNAs, thus enabling genome-wide analysis of translation activity. Similarly, the ribosome profiling 

analysis utilize NGS to quantify mRNA fragments protected from RNase digestion by the ribosome  [33, 

34]. Thus, all techniques are in place for genome-wide integration of transcription rate (i.e., GRO-seq), 

mRNA abundance (RNA-seq) and mRNA translation activity (i.e., polysome profiling). This will 

generate an integrative view of the transcriptome and its dynamic regulation, i.e., how the multiple 

transcriptome regulatory mechanisms are coordinated. 

 

Additionally, such data is needed as a platform to study mediation of post-transcriptional regulation by 

mRNA untranslated regions (UTR), where regulatory signals for post-transcriptional regulation are 

embedded. It is well documented that mRNA UTRs are responsible for mRNA stability and translation 

control. They contain binding sites for microRNA and many regulatory RNA-binding proteins. They are 

common in mammalian mRNAs. Human mRNAs, on average, have ~1000 nucleotide long UTRs (~800 

nucleotide 3’- and ~200 nucleotide 5’-UTRs). Systematic functional study of the UTRs, however, awaits 

multi-parameter datasets that enables simultaneous study of mRNA stability and translation activity. 

 

Thus, we generated a multi-parameter snapshot of the transcriptome by simultaneous genome-wide 

measurement of transcription rate (TR), mRNA abundance (RA) and translation activity (TA); we also 

estimated mRNA stability/degradation by the RA to TR ratio. The data enabled a quantitative 

delineation of cellular coordination of these regulatory mechanisms. Briefly, the data revealed functional 

consequences of the cellular coordination activity. We assessed, for the first time, the contribution of the 

mRNA-stabilization-by-translation regulatory mechanism to transcriptome regulation, as it is known 
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that actively translating mRNA is protected from degradation [35, 36]. Analysis of the data in 

conjunction with mRNA UTRs revealed further insights into, and the roles of UTRs in, cellular 

coordination of these transcriptome regulatory mechanisms.  

 

Results 

 

Simultaneous measurement of TR, RA and TA 

 

Previously, we have analyzed publicly available genomic datasets, in which multiple gene expression 

parameters are simultaneously measured [37, 38]. In those studies, we attempted to explain the 

discrepancy among gene expression parameters, which then seemed mysterious to most scientists, from 

the perspectives of biochemical pathway/network control and cellular operations. Though the genome-

wide measurement techniques have since greatly advanced and many datasets have recently been 

published [39], we have not seen a dataset that integrate TR, RA, TA and mRNA stability; the 

translational data in such studies are mass-spectrometry-based, and thus the coverage is not nearly 

genome-wide. Thus, in the present work, we took advantage of the genome-wide analysis power of NGS 

and its versatility through successful coupling to a variety of conventional experimental protocols. Our 

goal is to simultaneously measure TR, RA and TA, that is, to obtain a genome-wide multi-parameter 

snapshot of the transcriptome, in the HCT116 human cells.  The experimental strategy is illustrated in 

Figure 1. The experiments were done with cells in exponential growth (log) phase (see Materials and 

Methods for details). We measured RA with the standard RNA-seq method. Simultaneously, we 

measured genome-wide TR and TA, using the GRO-seq technique and the polysome profiling 

technique, respectively. We chose GRO-seq for two reasons; first, its higher sensitivity than the RNA 

Polymerase II ChIP-seq (Pol-II ChIP-seq) analysis; and, second, to avoid the need for label-time 

calibration associated with metabolic labeling based methods (i.e., 4sU-seq). Nevertheless, it has been 

shown that 4sU-seq data agree well with Pol-II ChIP-seq, and thus GRO-seq, data [29]. Our selection of 

TR measurement method should, thus, not matter. The NGS reads were aligned to the human genome 

with TopHat [40] and the read counts for expressed genes were calculated with the HTSeq-count 

software [41]. The read counts were then converted into Reads Per Kilo-base Per Million Mapped Reads 

(RPKM) values. With a cut-off of 1 RPKM for at least one of the three parameters, 12921 genes were 

found expressed in the HCT116 cells.	 As	 expected,	 the	 experimental	 results	 are	 highly	 repeatable.	
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For	all	three	parameters,	respective	biological	replicates	are	extremely	consisten	with	each	other,	

with	 linear	 regression	 R-squred	 values	 of	 at	 least	 0.94	 (see	 Methods	 for	 detail).	 The	 dataset	

provides	a	unique	opportunity	to	generate	mechanistic	 insight	 into	cellular	cordination	of	major	

transcriptome	regulatory	mechanisms. 

 

Comparative analysis of the three gene expression parameters, revealing sequentially higher levels of 

selectivity from transcription to translation  

 

Comparative analysis of the three gene expression parameters revealed extensive difference among 

them. Individual pairwise comparison resulted in, as expected, a general trend of good correlation; that 

is, association of a high value of one parameter with high values of other parameters. However, 

regression analysis revealed quite dramatic differences, which are way beyond intrinsic experimental 

noises, among the three parameters (Fig. 2). In Figure 2A, TR and RA are compared in contrast to, in the 

same scatter plot, a comparison of one RA biological replicate (RA2) against another RA biological 

replicate (RA1); the two RA replicates illustrate the level of the intrinsic experimental noises. The two 

RA replicates agree with each other well, with a linear regression slope of about 1 and a low level of 

dispersion along the regression line. However, the TR-RA regression is dramatically different. The slope 

of the regression line is only 0.5, suggesting systematic difference between the two parameters. 

Additionally, as shown in Figure 2B, the TA-RA regression line is also different from the RA2-RA1 

line. The change in the slope of the regression line, an increase to 1.11, is not as dramatic. But, 

statistically, it is highly significant, with a p-value of less than 1E-200 – essentially zero (see Materials 

and Methods for detail). Thus, systematic discrepancies exist among the three key transcriptome 

parameters.  

 

We also directly compared the statistical features of the genomic profiles of the three parameters. A 

systematic trend was observed. The levels of dispersion of the three distributions increase from 

transcription rate to mRNA abundance, and then to translation activity. Schematically, the trend is also 

shown in figure 3; quantitatively, this trend is illustrated by the sequential increase of two standard 

statistical parameters – the standard deviation and the value range –  of the three genomic profiles (Table 

S1). This trend is consistent with the observations in figure 2; the two regression lines in figure 2A 

indicate that RA tends to have higher values than TR for high expression level genes and lower values 
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than TR for low expression level genes, and thus has higher dispersion than TR; similarly, the two 

regression lines in figure 2B indicate TA has higher dispersion than RA.  

 

Thus, both regression analysis and statistical parameters of the distributions demonstrate that more and 

more genes display extreme (either low or high) parameter values from TR to RA, and then to TA. That 

is, the functional consequence of cellular coordination of the major transcriptome regulatory 

mechanisms is sequentially higher level of gene expression selectivity as the genetic information flow in 

the direction dictated by the Central Dogma. Next, we further dissected our dataset to decipher the 

underlying mechanisms that give rise to the observed discrepancies and lead to the sequential 

enhancement of gene expression selectivity.  

	 

Contribution of mRNA-stabilization-by-translation to the sequential enhancement of gene expression 

selectivity  

 

We tested whether, and to what extent, the TA-RA and the RA-TR discrepancy are related with each 

other. The TA-RA discrepancy is a reflection of mRNA translation regulation; enrichment of mRNA 

species with high translation activity in polysome complexes leads to higher TA values than RA values 

– and vice versa. In case of TR and RA, the discrepancy results mostly from regulation of both mRNA 

degradation and, to a much lesser extent, from RNA processing. RNA processing is extensively coupled 

to transcription [42], and transcription was shown to be on average more than three folds slower than 

RNA processing [6]. Transcription should be, in most cases, the rate limiting step in mRNA production. 

Thus, TR, as has been reported, closely correlates with mRNA production rate [6]. By extension, TR-

RA discrepancy should be, to large degree, accounted for by mRNA stability control; unstable mRNA 

(or high degradation rate) leads to lower RA values than mRNA production rate and, in turn, TR values 

– and vice versa.  Furthermore, it is known that active translation shields mRNAs from degradation, thus 

stabilizing the mRNA molecules and contributing to the discrepancy between mRNA production rate 

and RA [35]. In other words, translation activity should be a major determinant of how RA deviates 

from mRNA production rate and, in light of close correlation between TR and mRNA production rate, 

the TR-RA discrepancy. Our data provide a unique opportunity, to our knowledge for the first time, for a 

genome-wide and quantitative assessment of the contribution of this stabilization-by-translation 

regulatory mechanism to transcriptome regulation. For this purpose, we used the log2(TA/RA) and 
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log2(RA/TR) log ratios as translation index and TR-RA discrepancy index, respectively. The former is 

the log ratio between actively translated mRNA abundance and total mRNA abundance, thus a 

measurement of mRNA translation activity normalized against RA; the latter is the log ratio between 

total mRNA abundance and transcription rate, and can be operationally considered as a close estimate of 

mRNA stability.  

 

We hypothesized that the stabilization-by-translation regulatory mechanism should exert a significant 

effect and lead to positive correlation between the two indices. If our hypothesis is wrong, the two 

indices should be negatively correlated, since RA is the numerator in the TR-RA index and denominator 

in the translation index. However, our experimental results turned out to be the contrary and, thus, 

support our hypothesis. As shown in Figure 4A, a dot-plot of the two indices illustrates an overall 

positive relationship, with a correlation coefficient of 0.39; the linear regression line is also shown to 

quantify the relationship, with a slope of 0.19. In other words, an overall positive correlation was 

observed.  

 

To examine the significance of this observation, we randomly permutated the TR and TA parameters 

simultaneously to generate a statistical background model. As expected, this led to negative correlation 

coefficients, and negative slopes of the linear regression line, between the two indexes. We performed 

the randomization for 1000 times. This generated 1000 correlation coefficients and 1000 slopes of the 

corresponding linear regression lines, the boxplots of both of which were shown in Figure 4B. Out of the 

1000 randomization, not a single positive correlation was observed – both values were always negative. 

Figure 4B also shows the experimentally determined positive values of the correlation coefficient and 

the linear regression line slope, demonstrating a sharp contrast with the respective randomly generated 

values. This contrast illustrates the magnitude of the effect of the stabilization-by-translation regulation 

mechanism on the relationship between the two indices. Thus, consistent with our hypothesis, the 

stabilization-by-translation regulatory mechanism renders the relationship into an overall positive one. 

Moreover, it should be pointed out that the analysis likely under-estimates the significance of the 

stabilization-by-translation regulatory mechanism, due to the lack of RNA processing information in the 

TR-RA index.	
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To examine a potential causal relationship from this stabilization-by-translation regulatory mechanism 

to the enhancement of gene expression selectivity from transcription to translation, another statistical 

experiment was performed. We standardized the three genome profiles. This statistical procedure – 

mean subtraction followed by division by the standard deviation – is routinely used to eliminate 

statistical differences between distributions. The transformation should, in this case, reduce the 

numerical differences among the three parameters for many genes shown in figures 2A and 2B; a gene 

with higher TA and lower TR values than its RA value, for instance, should have similar values for all 

three parameters in the transformed dataset. That is, the statistical differences among the three genomic 

profiles shown in figure 3 and table S1 were eliminated by the standardization procedure. If the 

stabilization-by-translation regulatory mechanism, that is, selective degradation of translationally 

inactive mRNA, is a major cause of the discrepancy among the three parameters, the positive correlation 

between the translation and the stability indices must also be significantly reduced in the transformed 

data. This is, indeed, the case. The correlation coefficient was reduced from 0.39 to 0.12, supporting 

selective degradation of translationally inactive mRNA as a major cause for the enhancement of gene 

expression selectivity from transcription to translation. Additionally, many functional genomic 

normalization procedures rely on standardization of the datasets; and many others, such as the rank and 

quantile based methods, have similar effects. Our results raised a technical issue that they are not good 

choices for multi-parameter gene expression study, as valuable information will be lost. 

	

Summarily, all three analysis (correlation, permutation and standardization) support mRNA-

stabilization-by-translation as a major contributor to enhancement of gene expression selectivity from 

transcription to translation, an important functional aspect of transcriptome regulation. This is, to our 

knowledge, the first quantitative and genome-wide examination of the contribution of this regulatory 

mechanism.  

 

Pathway/function specific pattern of correlation between the stability and the translation indices 

	

The correlation between the two indices, on the other hand, is not nearly unequivocal; too many genes 

deviate significantly from the overall trend – the linear regression line (Fig. 4A). We asked whether this 

is due to function specific patterns of gene expression regulation, as genes involved in the same 

biological process have been shown to share a similar pattern in other datasets. To answer this question, 

.CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/104901doi: bioRxiv preprint first posted online Jan. 31, 2017; 

http://dx.doi.org/10.1101/104901
http://creativecommons.org/licenses/by-nc/4.0/


we performed two systematic analysis. First, we calculated the distances between the coordinates of 

each gene pair in Figure 4A. We then created the histograms of the pairwise distances between gene 

pairs associated with similar sets of gene ontology (GO) terms (see Materials and Methods for detail), 

and also a histogram for the distances between gene pairs with no significant GO similarity. The 

distance between genes associated with similar GO terms tend to be smaller than those between genes 

with no significant similarity in their GO association (Figure 5A). The trend is correlated with the GO 

similarity score; the higher the score, the more the histogram shifts toward short distance range. Second, 

we performed this comparison of distances between gene pairs whose proteins interact with each other 

versus gene pairs whose proteins have not been found to interact with each other. This was done with 

protein-protein interaction data, which was, as we have previously done [43], downloaded from the 

IntAct database [44, 45]. As shown in Figure 5B, the interacting pairs exhibit shorter distance than non-

interacting pairs. And the trend is correlated with the confidence score assigned to the protein pairs in 

the IntAct database. Since the protein-protein interaction datasets are generally considered noisy, the 

confidence score quantify the reliability of the interaction. As shown in Figure 5B, the more reliable the 

interaction, the more the histogram shifts toward short distance range.  

 

This function specific pattern is illustrated by the distinct patterns of two exemplary functional groups of 

genes – the genes for the proteasome subunit (PMS) proteins (PMSA1 to 7 and PMSB1 to 7) and the 

like-Sm (LSM) genes (LSM1 to 8) (Figure S1). The PMS genes code for proteins that constitute the 

proteasome 20S core structure [46]. Their mRNAs share a pattern of high levels of both indices. The 

LSM genes code for subunits of two single-stranded-RNA-binding hetero-heptameric ring structures – 

one cytoplasmic and the other nucleus [47]. Subunits LSM1 to 7 form the heptamer that is part of the P-

body and functions during mRNA degradation in the cytoplasm. Consistently, LSM1-7 mRNAs share a 

common pattern. However, the pattern is strikingly different from the pattern shared by the PMS 

mRNAs. While the LSM1-7 mRNAs exhibit relatively high TR-RA index values, unlike PMS mRNA, 

they exhibit largely lower than average translation activity. The LSM8 subunit interacts with, and 

nucleus-retains, LSM2 to 7 subunits to form the nucleus heptameric ring structure [47]. That is, it 

replaces the LSM1 subunit to form the nucleus heptameric structure. This heptameric structure binds to 

the U6 snRNA and U8 small nucleolar RNA (snoRNA), and thus functions during general RNA 

maturation in the nucleus. Consistent with this unique LSM8 function, the LSM8 mRNA does not 

follow the pattern shared by LSM1 to 7 mRNAs, in that it is relatively unstable (Figure S1).		
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Thus,	we	observed	a	function/pathway	specific	pattern	of	variation	in	how	much	individual	mRNA	

species	 is	 regulated	 by	 the	 stabilization-by-translation	 regulatory	 mechanism,	 i.e.,	 the level of 

correlation between the two indexes; some mRNAs defy this regulation completely in that they stay out 

of polysome but retain high RA-TR index values and, likely, high stability. Next, we tried to gain 

mechanistic insight into this variation, and turned our attention to other post-transcription regulatory 

mechanisms and the untranslated region (UTR) of mRNAs. 

 

mRNA UTR proportion is a major determinant of whether a mRNA obeys or defies the stabilization-by-

translation regulatory mechanism 

 

Besides the stabilization-by-translation regulation, many other mechanisms exist in multi-cellular 

eukaryotic species, but have not been accounted for in our analysis. For instance, the miRNAs/siRNAs 

target and regulate a large portion of the transcriptome. Essentially all regulatory signals for such 

regulation are embedded in mRNA UTR sequences. Consistently, UTRs are abundant in multi-cellular 

transcriptomes. This is especially true in human. As shown in Figure 6A, on average, the ORF occupies 

only ~50% of a human mRNA; the other half is devoted to the UTRs. In many mRNAs, the UTR 

occupies more than 90% of the total length; for instance, the mRNAs of the all-important CREB1 

(cyclic AMP-responsive element-binding protein 1) gene. Since the regulatory signals for mRNA post-

transcription regulation are mostly embedded in the UTR sequences, the proportion of an mRNA that is 

occupied by the UTRs should serve as a good measure of the degree to which the mRNA is controlled 

by these regulatory mechanisms. Thus, we hypothesized that this proportion should be a major 

explanatory factor for the high level of variation in the correlation between the two indexes. Indeed, our 

results support this hypothesis. First, the correlation coefficient between the two indices is optimal at 

~20% UTR, but steadily decreases as this proportion further increases (Fig. 6B); and so is the slope of 

the linear regression line between the two indices (Fig. 6C). Second, the mRNAs that defy the 

stabilization-by-translation regulatory mechanism, those that show low translation activity but relatively 

high RA-TR index values as identified by the red rectangle in Figure 4A, display higher proportion of 

UTRs. The histogram of their UTR proportions, when compared with that of the whole human 

transcriptome, shifts clearly toward high proportion ranges (Fig. 7).  
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To exemplify this observation, we once again used the PMS and the LSM functional groups of genes 

shown in figure S1 (Table S2). The mRNAs of the PMS group of genes have high levels of both RA-TR 

index and translation activity, and thus exemplify mRNAs controlled by the stabilization-by-translation 

mechanism. Consistently, as shown in table 2, they have less-than-average UTR proportions (an average 

of 35.3% and a median of 26.4%). The mRNAs for the LSM genes, on the other hand, have low levels 

of translation activity but relatively high RA-TR index values; they thus exemplify mRNAs defying the 

stabilization-by-translation regulatory mechanism. Not surprisingly, they have higher-than-average UTR 

proportions (a mean of 69.6% and a median of 68.6%). The difference between the UTR proportions of 

the mRNAs of the two functional groups of genes is statistically significant; it has, according to a t-test, 

a p-value of 0.0004 (Table S2).  

 

Thus, variation in the correlation between the two indices can be partially explained by post-

transcription regulatory mechanisms mediated by mRNA UTRs. To put it another way, multiple 

regulatory mechanisms control the transcriptome. Multi-parameter approaches, such as ours as 

described, have the urgently needed power to dissect cellular co-ordination of these mechanisms and 

functionally characterize UTR sequences.	 

 

Discussion 

 

Regulation of the transcriptome is a major underpinning of cellular operation. It involves, in addition to 

transcription, many post-transcriptional processes. Multiple parameters, such as TR, RA and mRNA 

degradation rate, are relevant to this multi-faceted process. Many multi-parameter studies have been 

reported and revealed significant discrepancies among the parameters, such as those between TR and 

RA and those between RA and protein abundance, prompting an appreciation for the complexity of 

transcriptome regulation.  

 

We have previously participated in the study of the complexity of transcriptome regulation, with a desire 

for a mechanistic understanding of the discrepancies among TR, RA and protein abundance as well as 

potential operational advantages the cells gain from them. In this study, we took advantages of the 

power and versatility of NGS analysis through its coupling to traditional experimental protocols. We 

simultaneously measured three transcriptome regulation parameters: TR, RA and TA. Based on the 
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close correlation between TR and mRNA production rate, we also indirectly estimate mRNA stability 

(or degradation rate) by the log ratio of RA and TR (log2(RA/TR)). Given the importance of mRNA 

UTRs in post-transcriptional regulation, the data was analyzed in conjunction with individual mRNAs’ 

proportions that are UTRs. To put it another way, we broke open the “blackbox” of transcriptome 

regulation and peeked inside for mechanistic insight into how the cells co-ordinate multiple factors that 

regulate the transcriptome. In the present paper, we publish, to our knowledge, the first genome-wide 

dataset that enables integrative analysis of TR, RA, TA and, to some degree, mRNA stability. 

 

It is well known that actively translating mRNA are likely protected from degradation, and thus 

stabilized. In bacteria, this is considered the primary mechanism for mRNA stability regulation. In 

eukaryotes, more post-transcriptional regulatory mechanisms, such as micro-RNA control, 

evolutionarily emerged, giving rise to a more complicated scheme of mRNA stability regulation. 

However, it is certain that the stabilization-by-translation mechanism still play prominent roles in 

eukaryotic transcriptome regulation. We provide a quantitative analysis of the impact of translation 

activity on transcriptome regulation, by showing a moderate but significant positive correlation between 

the mRNA translation index and the RA-TR index.  

 

This correlation has some explanatory power over the discrepancy between TR and RA. High translation 

activity protects a mRNA species from degradation, while other less translated mRNAs are being 

actively degraded and removed out of the transcriptome. This leads to enrichment of the mRNA species, 

resulting in higher steady-state abundance level than that implied by its production rate and, by 

extension, TR. Conversely, low translation activity makes a mRNA species more susceptible to the 

degradation process, leading to situations where the steady-state abundance level is lower than that 

implied by the production rate. The operational advantages the cells gained by implementing this 

regulatory scheme remain to be elucidated. 

 

Our multi-parameter approach represents a feasible option to enable the much-needed systematic 

analysis of mRNA UTRs. The UTRs are much more abundant in the human transcriptome than in any 

other transcriptome. Their functions in post-transcriptional regulation are well documented. Essentially, 

all signals for post-transcriptional regulation reside in the UTRs; for instance, microRNA and siRNA 

target sites, ARE, IRE-IRP etc. But systematic study of mRNA UTRs has been lacking, and our 
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knowledge about their functions remains fragmentary at best. This is perhaps due to a lack of relevant 

genomic experimental approaches and datasets. mRNA abundance measurement alone is ill-suited for 

the study of post-transcription regulatory mechanisms and functional analysis of mRNA UTRs. 

Additionally, though microRNAs/siRNAs target mRNA UTRs and are major regulators of both 

translation and mRNA degradation, to our knowledge, microRNA/siRNA study has not been integrated 

with simultaneous genome-wide measurement of translation activity and mRNA stability. Thus, our 

integrative multi-parameter analysis represents a novel functional genomic approach to mRNA UTR 

analysis. It is able to reveal that the UTRs potentially play an important role in maintaining the stability 

of translationally inactive mRNA species, thus conferring to human cells the capacity for a post-

transcriptional regulatory mechanism that is absent in prokaryotic species and mostly in uni-cellular 

species such as the yeast S. cerevisiae. It should be noted that our results represent only a single time-

point snap-shot of actively growing human cells. More power of this analysis approach, we believe, is 

yet to be relished in analyzing dynamic changes of the three parameters during physiological processes, 

and when it is coupled to more accurate mRNA production rate measurement techniques such as 

nascent-RNA-metabolic-labeling based approaches.  

 

Additionally, computational analysis of mRNA UTRs for key regulatory signals embedded in the UTR 

sequences remains technically challenging. This is due to low signal-to-noise ratio and the lack of a 

general guiding principle. For instance, a typical mammalian microRNA target site is no more than 8 

nucleotide long. Our approach provides a way to classify the mRNAs based on their patterns in the 

generated datasets, i.e., their behavior in the multi-faceted transcriptome regulation process. Key 

regulatory signals shall be shared by the UTRs of similarly classified mRNAs, and thus can be 

computationally extracted from them – a much easier approach than de novo computational analysis of 

mRNA UTR sequences. That is, datasets generated through this approach should provide a functional 

context for enhancing the signal-to-noise ratio in computational analysis of mRNA UTR sequences. 

 

We also quantitatively describe the trend of sequentially higher levels of selectivity as the genetic 

information flow from the genome to the proteome in the gene expression process. In other words, the 

gene expression machinery focuses its resources on less and less genes, so that only mission critical 

proteins are expressed in the proteome. The multi-stepped gene expression process can be considered as, 

to some degree, a selective amplification process. Transcription selectively amplifies the genomic 
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sequences into multiple copies of mRNA sequences. Translation, in turn, selectively amplifies 

individual mRNA molecules into multiple copies of protein sequences. The selectivity of this process is 

further enhanced by selective mRNA degradation. Even though obvious from the results in previous 

publications, this trend of sequentially higher levels of selectivity in the gene expression process has not 

received much attention, and was never explicitly stated in these reports. In this study, we quantitatively 

described this trend by comparing the dispersions of the genomic profiles of the three gene expression 

parameters. Our results also suggest that mRNA degradation plays perhaps the biggest role in this trend, 

as the jump in selectivity from transcription rate to mRNA abundance is much bigger than the increase 

from mRNA abundance to translation activity. That is, selective degradation of those mRNAs, which are 

not protected from degradation by active translation or other processes mediated by their UTRs, play an 

important role in shaping up the transcriptome and priming it for efficient production of mission-critical 

proteins.   

 

Conclusions 

 

In summary, we present a quantitative delineation of cellular coordination of transcription, mRNA 

abundance, mRNA translation activity, to some degree mRNA stability as well as mechanistic 

involvement of mRNA UTRs in the coordination process. As a consequence of the coordination activity, 

the cells exhibit sequentially higher level of gene expression selectivity from transcription to mRNA 

abundance, and then to translation activity. The results contribute to our understanding of the complexity 

of the multi-stepped gene expression process, through which the cells “read” the genomic “book” of 

seemingly simplistic string of nucleotides and “translate” information embedded in the sequences into 

cellular operations, that is, dynamic control of the biochemical flow through biochemical reactions, 

pathways and networks [1-4]. 

 

Methods 

 

Tissue Culture and mRNA Isolation for RNA-seq Analysis  
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The human HCT116 cells were cultured in a serum-free medium (McCoy's 5A (Sigma) with pyruvate, 

vitamins, amino acids and antibiotics) supplemented with 10 ng/ml epidermal growth factor, 20 µg/ml 

insulin and 4 µg/ml transferrin. Cells were maintained at 37 °C in a humidified incubator with 5% CO2.  

 

To extract mRNA for RNA-seq analysis, RNeasy kit (Qiagen) was used to extract total RNA from the 

HCT116 cells according to manufacture’s specification. GeneRead Pure mRNA Kit (Qiagen) was then 

used to isolate mRNA from the total RNA for Illumina NGS sequencing according to manufacture’s 

specification. 

 

GRO-seq Analysis 

 

Global run-on was done as previously described [26, 48, 49]. Briefly, two 100cm plates of HCT116 cells 

were washed 3 times with cold PBS buffer. Cells were then swelled in swelling buffer (10mM Tris-

pH7.5, 2mM MgCl2, 3mM CaCl2) for 5min on ice. Harvested cells were re-suspended in 1ml of the 

lysis buffer (swelling buffer with 0.5% IGEPAL and 10% glycerol) with gentle vortex and brought to 

10ml with the same buffer for nuclei extraction. Nuclei were washed with 10ml of lysis buffer and re-

suspended in 1ml of freezing buffer (50mM Tris-pH8.3, 40% glycerol, 5mM MgCl2, 0.1mM EDTA), 

pelleted down again, and finally re-suspended in 100µl of freezing buffer. 

 

For the nuclear run-on step, re-suspended nuclei were mixed with an equal volume of reaction buffer 

(10mM Tris-pH 8.0, 5mM MgCl2, 1mM DTT, 300mM KCl, 20 units of SUPERase-In, 1% Sarkosyl, 

500µM ATP, GTP, and Br-UTP, 2µM CTP) and incubated for 5 min at 30°C. Nuclei RNA were 

extracted with TRIzol LS reagent (Invitrogen) following manufacturer’s instructions, and was 

resuspended in 20µl of DEPC-water. RNA was then purified through a p-30 RNAse-free spin column 

(BioRad), according to the manufacturer’s instructions and treated with 6.7µl of DNase buffer and 10µl 

of RQ1 RNase-free DNase (Promega), purified again through a p-30 column. A volume of 8.5µl 

10×antarctic phosphatase buffer, 1µl of SUPERase-In, and 5µl of antarctic phosphatase was added to the 

run-on RNA and treated for 1hr at 37°C. Before proceeding to immuno-purification, RNA was heated to 

65°C for 5min and kept on ice. 
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Anti-BrdU argarose beads (Santa Cruz Biotech) were blocked in blocking buffer (0.5×SSPE, 1mM 

EDTA, 0.05% Tween-20, 0.1% PVP, and 1mg/ml BSA) for 1 hr at 4°C. Heated run-on RNA (~85µl) 

was added to 60µl beads in 500µl binding buffer (0.5×SSPE, 1mM EDTA, 0.05% Tween-20) and 

allowed to bind for 1hr at 4°C with rotation. After binding, beads were washed once in low salt buffer 

(0.2×SSPE, 1mM EDTA, 0.05% Tween-20), twice in high salt buffer (0.5% SSPE, 1mM EDTA, 0.05% 

Tween-20, 150mM NaCl), and twice in TET buffer (TE pH7.4, 0.05% Tween-20). BrdU-incorporated 

RNA was eluted with 4×125µl elution buffer (20mM DTT, 300mM NaCl, 5mM Tris-pH 7.5, 1mM 

EDTA, and 0.1% SDS). RNA was then extracted with acidic phenol/chloroform once, chloroform once 

and precipitated with ethanol overnight. The precipitated RNA was re-suspended in 50µl reaction (45µl 

of DEPC water, 5.2µl of T4 PNK buffer, 1µl of SUPERase_In and 1µl of T4 PNK (NEB)) and incubated 

at 37°C for 1 hr. The RNA was extracted and precipitated again as above before being processed for 

Illumina NGS sequencing. 

 

Polysome Isolation and mRNA extraction 

 

Polysome was isolated as previously described [50, 51]. Briefly, the HCT116 cells were incubated with 

100µg/ml cycloheximide for 15 minutes, washed three times with PBS, scraped off into PBS, and then 

pelleted by micro-centrifugation. Cell pellet was homogenized in a hypertonic re-suspension buffer (10 

mM Tris (pH 7.5), 250 mM KCl, 2 mM MgCl2 and 0.5% Triton X100) with RNAsin RNAse inhibitor 

and a protease cocktail. Homogenates were centrifuged for 10 min at 12,000 g to pellet the nuclei. The 

post-nuclear supernatants were laid on top of a 10-50% (w/v) sucrose gradient, followed by 

centrifugation for 90 min at 200,000 g. The polysomal fractions were identified by OD254 and collected. 

RNeasy kit (Qiagen) was used to extract RNA from the polysome fractions according to manufacture’s 

specification. GeneRead Pure mRNA Kit (Qiagen) was then used to isolate mRNA for Illumina NGS 

sequencing from the RNA according to manufacture’s specification. 

 

Illumina NGS Sequencing 

 

Sequencing libraries was generated with the Illumina TruSeq RNA Sample Preparation Kit. Briefly, 

RNA molecules were fragmented into small pieces using divalent cations under elevated temperature. 

The cleaved RNA fragments are copied into first strand cDNA synthesis using reverse transcriptase and 
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random primers. This was followed by second strand cDNA synthesis using DNA Polymerase I and 

RNase H. These cDNA fragments were end-repaired using T4 DNA polymerase, Klenow polymerase 

and T4 polynucleotide kinase. The resulting blunt-ended fragments were A-tailed using a 3′–5′ 

exonuclease-deficient Klenow fragment and ligated to Illumina adaptor oligonucleotides in a ‘TA’ 

ligation. The ligation mixture was further size-selected by AMPure beads and enriched by PCR 

amplification following Illumina TruSeq DNA Sample Preparation protocol. The resulting library is 

attached and amplified on a flow-cell by cBot Cluster Generation System.  

 

The sequencing was done with an Illumina HiSeq 2000 sequencer. Multiplexing was used to pool 4 

samples into one sequencing lane. After each sequencing run, the raw reads were pro-processed to filter 

out low quality reads and to remove the multiplexing barcode sequences.  

 

NGS Data Analysis 

 

The sequencing reads were mapped to the UCSC hg19 human genome sequences with the TopHat 

software, using the default input parameter values. For each sample, at least 80% of the reads were 

successfully mapped. For the sake of consistence across the three transcriptome regulation parameters, 

we counted the reads for each gene for the exon regions only. The counting was performed with the 

HTSeq-count software, and the counts were then transformed into Reads Per Kilo-base Per Million 

Mapped Reads (RPKM) values. 12921 genes have a minimal RPKM value of 1 for at least one of the 

three parameters, and were considered expressed in the HCT116 cells. Linear regression of log 

transformed data was used to examine consistence between biological replicate samples. 

 

Statistical Analysis 

 

The R open source statistical software (version 3.3.1) installed on a Mac Pro desktop computer was used 

for statistical analysis. Outlier identification, student t-test, standard deviation calculation, correlation 

coefficient calculation, linear regression and other statistical procedure are all done with this R software.  

 

The procedure for comparing the linear regression slopes/coefficients shown in figure 2B is described as 

follows. We first applied the following linear regression models to the data: 
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 log2(TA) = µ1+b1log2(RA) + e1, 

 log2(RA2) = µ2+b2log2(RA1) + e2, 

            and e1 and e2 follow normal distribution. 

It is estimated that 

 𝛽"= 1.11, 𝜎 𝛽" =0.003058, and 𝛽" 𝜎 𝛽"
~ T12920,  

𝛽$ = 0.99,	𝜎 𝛽$ = 0.001879	and	𝛽$ 𝜎 𝛽$
		~𝑇"$/$0.	

Therefore, the 97.5% confidence interval for 𝛽" is 

𝛽" ±	𝑡0.0"$3,"$/$0𝜎 𝛽" = 1.101403, 1.115113 . 

The 97.5% confidence interval for 𝛽$ is 

𝛽$ ±	𝑡0.0"$3,"$/$0𝜎 𝛽$ = 0.9819329, 0.9903571 . 

These two confidence intervals do not overlap, implying that, at significant level 0.05, the two 

regression coefficients are different. 

 

In addition, because T distribution with degrees of freedom of 12920 is very close to standard normal 

distribution, the t-score, calculated as below, 

𝛽$ − 𝛽"
𝜎$ 𝛽$ + 𝜎$ 𝛽"

	

approximately follow standard normal distribution. This allows p-value calculation. The p-value is 

essentially 0 (smaller than 1E-200). 

 

Gene Ontology (GO) Similarity Analysis 

 

Pairwise GO similarity score between human genes was computed as previously described [52-54]. 

Briefly, for each gene, we first generated GO fingerprint – a set of ontology terms enriched in the 

PubMed abstracts linked to the gene, along with the adjusted p-value reflecting the degree of enrichment 

of each term.  The GO similarity score quantifies similarity between the GO fingerprints of 

corresponding gene pair. For detail about GO fingerprint generation and similarity calculation, please 

see description in previous publications [53]. 
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Figure Legends 
 

Figure 1: Experimental strategy. Log-phase HCT116 cells were split up into three parts. One part 

was used to extract total mRNA for RNA-seq analysis to measure steady-state mRNA abundance 

(RA) (black texts and arrows). One part was used to perform nuclear run-on to generate bromo-

UTP labeled nascent RNA for sequencing, that is, GRO-seq analysis to measure transcription 

rate (TR) (green texts and arrows). The last part was used to isolate and quantify polysome 

associated mRNA to measure translation activity (TA) (green texts and arrows). 

 

Figure 2: Comparison of TR, RA and TA to illustrate the discrepancy among the three 

parameters. A. Scatter plot of TR versus RA (red) and a RA experimental replicate versus 

another RA experimental replicate (black). B. Scatter plot of TA versus RA (red) and a RA 

experimental replicate versus another RA experimental replicate (black). The same two RA 

experimental replicates are used in A and B. The linear regression lines are also shown.  

 

Figure 3: Comparison of the genomic profiles of the three transcriptome parameters – TR, RA 

and RA. Histograms of TR (black), RA (red) and TA (blue) are shown. The RA and TA 

histograms are shifted a little bit so that the three histograms have theirs peaks in the same x-axis 

range, in order to better display the increased levels of dispersion from TR and RA and then to 

TA. 

 

Figure 4: Overall positive correlation between the stability index (log2(RA/TR)) and the 

translation index (log2(TA/RA)). A. Scatter plot of the stability index versus the translation 

index. The correlation coefficient and the linear regression line between the two indices are also 

shown. The red rectangle identifies mRNAs with high stability but low translation activity to be 

further analyzed later (see text and Figure 7). B. Box plot of the correlation coefficient and the 

slope of linear regression lines between the two indexes upon randomization of the experimental 

dataset. Values from 1000 randomization were used to generate the boxplot. Experimental values 

are also shown and denoted. 
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Figure 5: Pathway/function specific pattern of the correlation between the stability and the 

translation indexes. A. Histograms of the distances between their mRNAs’ coordinates in Figure 

3A for gene pairs with different levels of GO similarity. B. Histograms of the distances for gene 

pairs whose proteins were shown to mutually interact with different levels of interaction 

confidence. 

 

Figure 6: The proportion of a mRNA that is occupied by the UTRs is a determinant of the level 

of the correlation between the stability and the translation indices. A: Histogram of the UTR 

proportions of human mRNAs. B and C: The correlation coefficient (B) and the slope of the 

linear regression line (C) between the stability and the translation indices decrease as the mRNA 

UTR proportion increases.  

 

Figure 7: Histogram of the UTR proportions of the mRNAs that have relative high stability but 

lower-than-average translation activity in comparison with that of the whole human 

transcriptome. The mRNAs with high stability but low translation activity were selected with the 

red rectangle in Figure 4A. 
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Figure 1 
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Figure 2A 
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Figure 2B 
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Figure 3  
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Figure 4A 
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Figure 4B 
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Figure 5B 
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Figure 6A 
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Figure 6B 
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Figure 6C 
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Figure 7 
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